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Abstract

A new method is presented for numerically capturing a moving interface of arbitrary dimension and codimension.

The method is named the ‘local level set method’, since it localizes the level set method near the interface to significantly

reduce the computational expense of the level set method. Following the framework of the level set method, an interface

is implicitly represented as the zero level set of a vector valued function. A spatial tree structure is used to locally sample

the vector valued function near the interface. Using a Lipschitz stable interpolation and a semi-Lagrangian scheme, our

method is stable under both the maximum norm and the Lipschitz semi-norm. Due to this stability, the method does

not need to reinitialize a level set function. Several numerical examples with high codimension are successfully tested.

� 2004 Elsevier Inc. All rights reserved.
1. Introduction

The level set method in [20] has been a successful tool for simulating a moving interface of codimension

one, because of its simplicity and efficiency. Its successful applications include multiphase flows [17,19],

surface reconstructions [6,7], and image processing [14,22]. One drawback of the level set method is its high

computational expense because it expands the domain of computation from the interface to a grid in one

higher dimension. To reduce the cost, two main approaches have been employed. One approach is to re-

strict the domain of a uniform grid near the interface [5,4]. The other approach uses a multi-resolution grid

to enable high resolution only near the interface using a spatial tree structure, a so-called quadtree in R2 and

an octree in R3 [11,15].
The level set method of codimension one [20] was theoretically extended to simulate a moving interface

of arbitrary codimension [12], where an interface is implicitly represented as the zero level set of a scalar

valued function, and applied, e.g., to a medical active contouring of codimension two [13]. However, the

theoretical extension to higher codimension is unstable for locating isosurfaces. The instability was fixed in
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[18] by representing the isosurface as the zero level set of a vector valued function, and successfully applied

to a moving curve in R3 with geometry-dependent speed [18] and recently to capturing a one-dimensional

wavefronts in R3 and two-dimensional wavefronts in R5 [21].
A drawback of the level set method in high codimension is its inefficiency by its expanding the domain of

computation from the interface to a grid in higher dimension. It is the purpose of this paper to introduce a

numerical method overcoming this drawback, while keeping the simplicity and versatility of the level set

method. Our method originates from [11] in using a spatial tree structure and a semi-Lagrangian scheme,

and is a generalization of [11], because it can deal with a moving interface of arbitrary codimension and

does not require the reinitialization procedure every step.

The key concept of our method is to put more grid points near the interface and less grid points away

from the interface, and implemented by using a tree structure that enables a multi-resolution grid. A grid
cell keeps being split if it is near to the interface. The splitting condition can be easily formulated using the

Lipschitz constant of the level set function and the magnitude of the function values, as shown in [11,24].

Another key concept is to make all the building blocks in our method Lipschitz stable, because the sam-

pling process in our method heavily relies on the Lipschitz constant of a vector valued function.

A sampling algorithm is presented in Section 2 that adaptively samples a vector valued function. In

Section 3, an interpolation algorithm reconstructs a Lipschitz continuous function from the sampled

function. In Section 4, an evolution algorithm of a level set function is introduced that is Godunov-type,

i.e., a combination of the sampling algorithm in Section 2, a approximate solution operator, and the in-
terpolation algorithm in Section 3. A practical implementation of our method is given in Section 5. Our

method is tested with several examples in Section 6.
2. Adaptive sampling

Let a vector valued function ~/ : Rd ! Rc be given with its level set C � Rd . Since the level set method

eventually deals with C, not with~/, it is desirable to adopt a multi-resolution grid to enable a fine grid near C
anda coarse grid away fromC. For this purpose,we employ a spatial tree structure, called aQuadtree inR2 and

a Octree in R3, which has been a very successful tool in many areas in which multi-resolution is needed [8,9].

If the interface CðtÞ � Rd moves with velocity ~V : Rd ! Rd , the level set method implicitly tracks the

interface as the zero level set of ~/ðtÞ : Rd ! Rc by solving a convection equation;

~/t þ ð~V � rÞ~/ ¼ 0:

Since the solution of this equation stays Lipschitz continuous if the initial data is, it is valid to assume that
~/ : Rd ! Rc is Lipschitz continuous, that is

Lipð~/Þ :¼ sup
x6¼y2Rd

k~/ðxÞ �~/ðyÞk1
kx� yk2

< 1:

Let a hierarchical grid fGlgl¼0;...;lmax
be given in Rd such that Gl has 2l�d number of grid cells of equal size,

and Glþ1 is a refinement of Gl. Fig. 1 illustrates a nested grid in R2. Given a grid cell C 2 Gl, let us denote its

parent cell in Gl�1 by prntðCÞ, the set of its children in Glþ1 by childrenðCÞ, its size by sizeðCÞ, and the set of
the center points of all the faces of C by centersðCÞ. For a grid cell C ¼

Q
i¼1;...;d ½ai; bi�,

centersðCÞ ¼
Q

ifai; aiþbi
2

; big and sizeðCÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

iðbi � aiÞ2
q

. Fig. 2 illustrates the set of center points of a unit

cube ½0; 1�d when d ¼ 1; 2; 3.

In the hierarchical grid fGlgl¼0;...;lmax
, we need to determine which cells are to be sampled. One rule of the

determination is to guarantee that a parent cell is sampled whenever its child is sampled. This rule implies



Fig. 2. Center points of a unit cube.

Fig. 1. Nested grids in R2.
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that there is always an hierarchical chain of grid cells from the root cell G0 to a sampled cell, and make the
domain D form a tree structure, which allows fast access to its elements. The other rule is to ensure high

resolution of sampling near the interface C and low resolution away from C. Satisfying these two rules, a

very useful sampling algorithm, known as Whitney decompositions, appeared in [11] such that ‘‘recursively

split and sample any cell whose edge length exceeds its minimum distance to C’’.
For a general Lipschitz continuous function ~/ : Rd ! Rc, the Whitney decompositions can be gen-

eralized as

Recursively split and sample any cell satisfying g.
The splitting condition g is given by

gðCÞ : min
v2centersðCÞ

~/ðvÞ
��� ���

1
6Lip ~/

� �
� sizeðCÞ

4
:

Algorithm 1 is a concrete formulation of our adaptive sampling algorithm. The algorithm starts with the

root grid cell G0, and recursively constructs a subdivision S ¼ fCig of G0.

Algorithm 1 (Subdivision of G0 according to ~/ : Rd ! Rc).
Input: G0 and ~/ : Rd ! Rc

1. C ¼ G0 and S ¼ ;
2. S ¼ S [ fCg
3. if C 62 Glmax and gðCÞ is true
4. S ¼ S � fCg
5. for all C0 2 childrenðCÞ
6. go to 2 with C ¼ C0

Output: S
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From the subdivision S ¼ fCig of the root cell G0, a set D � Rd is defined as

D ¼
[
i

centersðCiÞ:

A sampled function R~/ of ~/ is accordingly defined as a restriction of ~/ : Rd ! Rc to D, i.e.,

R~/+~/ jD: D ! Rc. The following is a proposition explaining the properties of the sampling algorithm.

Proposition 2.1. Every grid cell intersecting C is contained in the subdivision S.

Proof. Given a grid cell C such that C \ C 6¼ ;, let w 2 C \ C. Then there exist a v 2 centersðCÞ such that

kv� wk2 6
sizeðCÞ

4
, since the maximum distance in a cube is its diagonal size. Then,

~/ðvÞ
��� ���

1
¼ ~/ðvÞ
��� �~/ðwÞ

���
1
6Lipð~/Þ � kv� wk2 6Lipð~/Þ � sizeðCÞ

4
:

Therefore gðCÞ is true. Since C � prntðCÞ; prntðCÞ \ C 6¼ ; and gðprntðCÞÞ is true. Also every ancestor of C
satisfies the splitting condition g. Since Algorithm 1 recursively constructs from an ancestor to its successor

satisfying g, C is included in the subdivision S. �

By the above proposition, the highest resolution is guaranteed near C. If every component /i of
~/ is a

signed distance function to its zero level set fx 2 Rd j/iðxÞ ¼ 0g, then the splitting condition is equivalent to

a statement that the distance from C to C is smaller than one fourth of the size of C. Therefore, the memory

size in a grid Gl is about the order of C which is ðd � cÞ dimensional. Let N :¼ 2lmax , then

jD \ Glj ¼ OðNd�cÞ for 06 l6 lmax. Combining all grids from l ¼ 0; . . . ; lmax, the total memory size, jDj will
be OðNd�c � logðNÞÞ. Compared to the memory size OðNdÞ of the uniform sampling, Algorithm 1 signifi-

cantly saves memory, while maintaining its highest resolution near the interfaces by Proposition 2.1.
3. Interpolation

In Section 2, we discussed a sampling procedure from continuous functions to discrete functions. Here,

we discuss the reverse, an interpolation procedure from discrete to continuous. On a uniformly sampled

function, piecewise polynomial interpolation has been one of the best ways to achieve both accuracy and

efficiency. However its direct use on a multi-resolution grid would lead to Lipschitz instability. Fig. 3 shows

a case where the piecewise multi-linear interpolation invokes a Lipschitz instability on a multi-resolution

grid in R2.
In Section 4, we shall introduce a semi-Lagrangian scheme that is a combination of the adaptive sam-

pling in Section 2, approximate solution operator, and the interpolation in this section. The whole scheme
Fig. 3. The piecewise multi-linear interpolation invokes discontinuity at P . The interpolation values at P from grid cells A and B are

respectively 1 and 0.



372 C. Min / Journal of Computational Physics 200 (2004) 368–382
needs to be Lipschitz stable. For this purpose, we present a Lipschitz stable interpolation on a multi-

resolution grid.

3.1. Triangulation

Let ~w : D ! Rc be an adaptively sampled function with a subdivision S ¼ fCig of G0 generated by

Algorithm 1. To enable a Lipschitz stable interpolation of ~w, the subdivision S needs to be refined into a

triangulation. For this purpose, we employ a well-known refining algorithm, pulling [3]. A pulling of a point

P on a subdivision S ¼ fCig of G0 results in a subdivision T of G0 that is obtained by modifying each

element of S as follows:

P 62 Ci; thenCi 2 T ;
P 2 Ci; then for every facet F of Ci not containing P ; convðP ; F Þ 2 T ;

�

Let us give the center points of every k-dimensional face of Ci the label k, 06 k6 d. By sequentially

pulling all the center points in order of non-increasing label, the cubic subdivision fCig is refined to a
triangulation, T ¼ fTjg, which is a general triangulation procedure known as a complete barycentric sub-

division [3,16]. Fig. 4 shows a cases in R2. Since the domain D is the union of all center points of each Ci,

T ¼ fTjg is a triangulation of the root cell G0 with vertices in D.

3.2. Simplicial interpolation

In Section 3.1, the domain of ~w : D ! Rc was triangulated into simplices fTjg. Based on this triangu-

lation, we define an interpolation, or a prolongation P~w : Rd ! Rc as follows:

P~wðxÞ ¼ P~wjTjðxÞ; x 2 Tj;

P~wðx�Þ; x 6¼ G0:

(

Here, x� denotes the nearest-point projection of x into G0, i.e., the nearest point in G0 to x, which is well

defined since G0 is convex. Fig. 5 shows some cases of projections in R2.P~wjTj is defined as the unique linear

interpolant of ~w on the simplex Tj. The interpolation P is Lipschitz stable by the following proposition.
Here, we define the Lipschitz constant of a discrete function ~w : D ! Rc as

Lipð~wÞ ¼ max
x 6¼y2D

~wðxÞ �~wðyÞ
��� ���

1
x� yk k2

:

Fig. 4. Triangulation of a cubic subdivision by pullings in R2.



Fig. 5. Projection of x outside into x� inside the domain.
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Proposition 3.1. The interpolation P is Lipschitz stable, such that LipðP~wÞ ¼ Lipð~wÞ

Proof. Since P~w is a linear interpolant on each simplex Tj, LipðP~wjTjÞ ¼ Lipð~wjTjÞ6Lipð~wÞ. On Tj \ Tj0 ,P~w
has two possible definitionsP~wjTj andP~wjTj0 . Because fTjg is a triangulation, Tj \ Tj0 is also a simplex. Since

there exits only one linear interpolant on a simplex, the two definitions must be the same. Therefore P~w is

continuous on G0. Since LipðP~wjTjÞ6Lipð~wÞ and P~w is continuous on G0,

LipðP~wjG0Þ6Lipð~wÞ:

For any x; y 2 Rd , kx� � y�k2 6 kx� yk2. Therefore,

P~wðxÞ
��� �P~wðyÞ

���
1
¼ P~wðx�Þ
��� �P~wðy�Þ

���
1
6Lip P~w jG0

� �
� xk � yk2:

So, LipðP~wÞ6Lipð~wÞ. Since the domain of ~w is a subset of the domain of P~w, LipðP~wÞ ¼ Lipð~wÞ. �
4. Evolution

In this section, we present an algorithm numerically capturing an interface in high dimension and co-

dimension. Let us assume that an interface C � Rd of codimension c is moving with velocity ~V : Rd ! Rd .

It can be implicitly represented as the zero level set of ~/ðx; tÞ : Rd � Rþ ! Rc, where each component of the
~/ satisfies the so-called level set equation

o

ot
/i þ ~V � r/i ¼ 0

for i ¼ 1; . . . ; c. In a uniform grid, the level set equation is usually discretized with higher order accurate

ENO or WENO schemes in space and the Runge–Kutta methods in time [1,23], but in a multi-resolution

grid, neighboring points may not exist, which makes it hard to apply conventional finite difference schemes.

Because of that, a semi-Lagrangian scheme has been used for discretizing the level set equation on a multi-

resolution grid when the codimension is one [11]. We extend the techniques of [11] to higher dimension and
codimension.

Given ~/n : Dn ! Rc, the next level set function ~/nþ1 : Dnþ1 ! Rc is defined as

~/nþ1 ¼ ðRsSsPÞ~/n:
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Here, P is the interpolation operator in Section 3, S is an approximate solution operator, and R is the

adaptive sampling operator in Section 2. Via the characteristic curve of the level set equation, S is

equivalent to an ODE solver to the backward characteristic ODE, _x ¼ �~V ðx; tÞ. We choose the Euler
scheme for an ODE solver, S, then we have

ðSP~/nÞðxÞ ¼ ðP~/nÞðx� Dt~V ðx; tnÞÞ:

To adaptively sample ~/nþ1 from SP~/n : Rd ! Rm, we need an estimate on the Lipschitz constant of

SP~/n, which is given in the following proposition.

Proposition 4.1.

LipðSP~/nÞ6Lipð~/nÞ � 1

 
þ Dt � sup

x2Rd

r~V ðx; tnÞ
��� ���

2

!
:

Proof. By the definitions of S and P ,

SP~/nðxÞ
��� �SP~/nðyÞ

���
1
¼ P~/n x

���� � Dt~V ðx; tnÞ
�
� P~/n y

�
� Dt~V ðy; tnÞ

����
1

6Lip P~/n
� �

� x
��� � y þ Dt ~V ðx; tnÞ

�
� ~V ðy; tnÞ

����
2

6Lip ~/n
� �

� xk
�

� yk2 þ Dt � ~V ðx; tnÞ
��� � ~V ðy; tnÞ

���
2

�
:

Applying the mean value theorem to the vector valued function ~V , we have

~V ðx; tnÞ
��� � ~V ðy; tnÞ

���
2
6 sup

z2Rd

r~V ðz; tnÞ
��� ���

2
� xk � yk2:

Here, r~V denotes the deformation matrix of ~V and kr~V k2 is the matrix 2-norm that is the maximal

singular value of the matrix r~V . The proposition follows from these two inequalities. �
5. Implementation

We discuss an implementation of our method that consists of an adaptive sampling in Section 2, a

Lipschitz stable interpolation in Section 3, and an evolution algorithm in Section 4. Since the evolution is a

combination of sampling and interpolation, it is enough to discuss implementations of sampling and

interpolation.

5.1. Implementation of sampling

Since the sampling Algorithm 1 recursively subdivides the coarsest cube G0 2 Rd , a 2d branched tree is a

natural choice for the data structure of the sampling. Possible implementations of this tree structure are

thoroughly discussed in [8,9]. Among them, region-based trees and matrix-based trees are the most ap-

propriate for our purpose. The region-based tree is fast for interpolation but requires more memory for

construction, while the matrix-based tree is slow for interpolation but requires less memory for construc-

tion. Each point in a region-based tree may be multiply defined, possibly 2d times, so it is hard to modify the
tree, but, each point in matrix-based tree is singly defined, so it becomes easy to modify. Our algorithms,

which consists of sampling and interpolation, do not need any modification, but only need new creations of
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adaptively sampled functions. For these reasons, we take a region-based tree as a choice of the tree

implementation.

Unlike the uniform sampling, we cannot predict the memory size of the adaptive sampling before doing
it. Therefore, the programming languages with dynamic memory allocations are preferred, such as C++ or

Java. We have chosen C++ for better performance. An implementation of region-based tree is given in the

following, when the adaptive sampling is performed to a vector valued function ~/ : Rd ! Rc with d ¼ 5 and

c ¼ 3.

struct Node {

int i1,i2,i3,i4,i5;

int size;

};
struct Leaf :public Node {

float vs1[3][3][3][3][3];

float vs2[3][3][3][3][3];

float vs3[3][3][3][3][3];

};

struct Branch :public Node {

Node* children[2][2][2][2][2];

};

The quantity node represents a cube, fx 2 Rd j ij 6 xj 6 ij þ size; j ¼ 1; . . . ; dg, and has two possible types,

Leaf and Branch. If a node does need to be split, it takes a type of Branch that has 2d number of children. If
not, it takes a type of Leaf, and its center points are sampled and stored. Since centersðCÞ ¼ ½0; 1

2
; 1�d for a

cube C ¼ ½0; 1�d , it would sample 3d � c number of center points for each leaf.

5.2. Barycentric interpolation on a cube

Any cube C � Rd is affinely isomorphic to ½�1; 1�d under translations and scalings. So, we need only to

discuss an interpolation on ½�1; 1�d , and the general case will follow by the affine isomorphism. Since

centersð½�1; 1�dÞ ¼ f�1; 0; 1gd , let us assume a function ~w : f�1; 0; 1gd ! Rc.
Although the barycentric interpolation is defined as a piecewise linear interpolant on the triangulation of

the domain in Section 3, we do not explicitly triangulate a cube, but employ the following very efficient

algorithm.

Given x 2 ½�1; 1�d , the coordinates of x are sorted with a permutation J of f1; . . . ; dg such that

1P jxJð1ÞjP � � � P jxJðdÞjP 0:

For a notational convenience, let us set xJð0Þ ¼ 1 and xJðdþ1Þ ¼ 0 to have jxJð0ÞjP � � � P jxJðdþ1Þj. Define

P0 ¼~0 and

Pi ¼ Pi�1 þ sgn½xJðiÞ�~eJðiÞ for i ¼ 1; . . . ; d:

Here,~ei denotes the canonical ith unit vector and sgnðxÞ refers to the signum of x, i.e., HðxÞ � Hð�xÞ with
the Heaviside function H . Then, we have the following barycentric decomposition of x:

x ¼
Xd
i¼1

xi~ei ¼
Xd
i¼1

xJðiÞ~eJðiÞ ¼
Xd
i¼1

xJðiÞ
�� �� � sgn xJðiÞ

� �
~eJðiÞ ¼

Xd
i¼1

xJðiÞ
�� �� � Pi½ � Pi�1� ¼

Xd
i¼0

xJðiÞ
�� ��	

� xJðiþ1Þ
�� ��
Pi:

Since the barycentric interpolant P~w : ½�1; 1�d ! Rc is a linear interpolant on a simplex conv½P0; . . . ; Pd �, we
have the following formula:
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P~wðxÞ ¼
Xd
i¼0

½jxJðiÞj � jxJðiþ1Þj�~w Pið Þ:

Note that ~wðPiÞ is well defined, since Pi 2 f�1; 0; 1gd for all i ¼ 0; . . . ; d.

5.3. Barycentric interpolation on a multi-resolution grid

Let an adaptively sampled function ~w : D ! Rc with D ¼
S

i centersðCiÞ be given. This section discusses
an implementation of its barycentric interpolation P~w : Rd ! Rc. Since P~wðxÞ for x 62 G0 is defined as

P~wðx�Þ with x� 2 G0, it is enough to discuss an interpolation procedure of P~wðxÞ with x 2 G0.

P~w : Rd ! Rc is defined as the piecewise linear interpolation on the triangulation of the domain D of ~w.
Since the triangulation is expensive to implement, it is desired to circumvent the triangulation as done in the

previous section. The complete barycentric subdivision, which is the algorithm triangulating D, sequentially
refines the subdivision fCig of G0 by pulling all the center points of fCig of label d; . . . ; 0. As a result, a cube

may be subdivided by any neighborhood sharing a face of dimension 0; . . . ; d � 1. Since so many (22d in the

worst case) neighboring cubes are involved for the interpolation on a cube, the interpolation procedure
becomes expensive if we access all the neighboring cubes.

If we stop the pullings of the complete barycentric subdivision at the label d � 1, it may not be a tri-

angulation in general and therefore invoke discontinuities, but this provides a very efficient algorithm to

implement and does not degrade numerical results too much according to our experiments in Section 6. In

Fig. 4, the fourth picture indicates the complete barycentric subdivision, and the third one indicates the

partial barycentric subdivision that stops pullings at the label d � 1. From these reasons, let us employ this

partial barycentric subdivision to obtain the following efficient algorithm.

Given x 2 G0, it is not difficult to access the smallest cube C containing x in fCig, because the subdivision
fCig forms a tree structure that enables a fast access. Let us denote by P the center of C, by Q the inter-

section of the boundary of C and the line connecting P and x, and by C0 the neighborhood of C sharing the

ðd � 1Þ-dimensional face with C and containing Q. Fig. 6 illustrates a case in R2. If C is smaller than C0,

then C needs to be subdivided by some center points of C0. Otherwise, it would be enough to use the

barycentric interpolation only on C, which is already discussed in the previous section. Here follows a

concrete formulation of the interpolation procedure.

Let the cube C be given with coordinates; C ¼ fy 2 Rd jai 6 yi 6 big. Its center point P is given by

Pi ¼ aiþbi
2

for i ¼ 1; . . . ; d. Let us define k 2 R as

k ¼ min
16 i6 d

bi � Pi
xi � Pij j :

Then Q, the intersection point between oC and the line connecting P and x is given by

Q ¼ P þ kðx� P Þ:
Fig. 6. Weak barycentric interpolation on a dyadic grid.
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Let C0 be the smallest cube in fCig containing Q, then

P~wðxÞ ¼ ðP~wÞjCðxÞ if sizeðCÞ6 sizeðC0Þ;
1
k ðP~wÞjCðP Þ þ ð1� 1

kÞðP~wÞjC0 ðQÞ if sizeðCÞ > sizeðC0Þ:

(

Barycentric interpolations on a cube, P~wjC and P~wjC0 were given in Section 5.2.
6. Numerical examples

Every example was programmed in C++ and run on a PC with 2.2 GHz CPU and 2 GB memory. Since

the adaptive sampling in Section 2 is uniform near the interface by Proposition 2.1, an isosurfacing al-

gorithm [2] on a uniform grid was used to isosurface and visualize the level set of adaptively sampled

functions.

6.1. Accuracy test

Our method employed the piecewise linear interpolation in space and the Euler method in time, which
would result in a first-order accurate method in a uniform grid. Since a multi-resolution grid is used for the

space discretization in our method, the course parts of the grid negatively affects the fine parts, which will

weaken the first-order accuracy. Here, we numerically test the accuracy of our method.

As a test example, a circle of center ð� 1
3
;� 1

3
Þ and of radius 1

3
is advected with a constant velocity

~V ¼ ð1; 1Þ until T ¼ 0:625. Since the deformation matrix r~V is the zero matrix, the Lipschitz constant

stayed the initial Lipschitz constant for the whole timesteps. Table 1 shows that the convergence rate of our

method is about a half.

6.2. Wave reflections in R 2

It is well known that a high frequency wave behaves like a particle, which can be nicely represented as the

Eikonal equation,

ut þ cðxÞ � ruk k ¼ 0:

However, the classical viscosity solution of this equation does not allow superpositions that are natural in

the wave phenomenon. To overcome this deficiency, Osher et al. [21] substituted the Eikonal equation with

its characteristic equation that captures the wave fronts in phase space, which is

~/t þ ð~V � rÞ~/ ¼ 0;

with velocity

~V ðx; y; hÞ ¼ ðcos h; sin h; 0Þ:
Table 1

Accuracy test

Grid L1 error Rate

1282 0.0286 –

2562 0.0197 0.54

5122 0.0132 0.58

10242 0.00928 0.51
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As a test example, we take an initial wave front as a circle of center at (0,0) and of a radius 1
2
that is im-

plicitly represented as the zero level set of

~/0ðx; y; hÞ ¼ ðx� 1
2
cos h; y � 1

2
sin hÞ:

We take a domain of ½�1; 1�2 � ½�p; p� whose boundary behaves a mirror, or a reflector of the wave. To

incorporate the reflection, we modify the interpolation procedure in Section 3. Given ~/ : D ! R2 with
ðx; y; hÞ 62 ½�1; 1�2 � ½�p; p�, P~/ðx; y; zÞ is defined as P~/ðx�; y�; h�Þ with ðx�; y�; h�Þ 2 ½�1; 1�2 � ½�p; p� such
that

x� ¼
2� x; x > 1;
�2� x; x < �1;
x; jxj6 1;

8<
: y� ¼

2� y; y > 1;
�2� y; y < �1;
y; jyj6 1;

8<
: h� ¼

�h; jxj6 1 and jyj > 1;
p� h; jxj > 1 and jyj6 1;
pþ h; jxj > 1 and jyj > 1;
h; jxj6 1 and jyj6 1:

8>><
>>:

The timestep Dt was chosen as Dt ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dx2þDy2þDh2

p
2

. The Lipschitz constants of ~/ðx; y; h; tnÞ was increased by

Lnþ1 ¼ Ln � ð1þ DtÞ with L0 ¼
ffiffiffi
5

p
=2. The evolution was simulated until T ¼ 1:5 (see Fig. 7). The numerical

cost of memory is OðN 2Þ ’ OðN 2 logNÞ as expected (see Table 2).
6.3. Wave reflections in R3

This example is an extension of the previous example to R3. Osher et al. [21] substituted the Eikonal

equation with its characteristic equation that captures the wave fronts in phase space, which is

~/t þ ð~V � rÞ~/ ¼ 0;

with velocity

~V ðx; y; z; h;wÞ ¼ ðcos h sinw; sin h sinw; cosw; 0; 0Þ:

As a test example, we take an initial wave front as a sphere of center at (0,0,0) and of a radius 1
2
that is

implicitly represented as the zero level set of

~/0ðx; y; z; h;wÞ ¼ x
	

� 1
2
cos h sinw; y � 1

2
sin h sinw; z� 1

2
cosw



:

We take a domain of ½�1; 1�3 � ½�p; p� � ½0; p� whose spatial boundary, o½�1; 1�3 behaves a mirror, or a
reflector of the wave. To incorporate the reflection, we modify the interpolation procedure in Section 3.

Given ~/ : D ! R3 with ðx; y; z; h;wÞ 62 ½�1; 1�3 � ½�p; p� � ½0; p�, P~/ðx; y; z; h;wÞ is defined as

P~/ðx�; y�; z�; h�;w�Þ with ðx�; y�; z�; h�;w�Þ 2 ½�1; 1�3 � ½�p;p� � ½0; p� such that
a� ¼
2� a; a > 1;
�2� a; a < �1;
a; jaj6 1

8<
: for a ¼ x; y; z;
h� ¼

�h; jxj6 1 and jyj > 1;

p� h; jxj > 1 and jyj6 1;

pþ h; jxj > 1 and jyj > 1;

h; jxj6 1 and jyj6 1;

8>>><
>>>:

w� ¼ p� w; jzj > 1;

w; jzj6 1;

�



Fig. 7. Reflections in R2 simulated on a 10243 grid.

Table 2

Reflections in R2

Grid Local level set method Level set method

Space (MB) Rate Time (s) Rate Space (MB) Rate

1283 61.4 – 250 – 33.6 –

2563 138 2.2 1160 4.6 268 8.0

5123 290 2.1 5045 4.3 2147 8.0

10243 594 2.0 21,068 4.2 17,179 8.0
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Timestep Dt was chosen as Dt ¼ 0:5 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dx2 þ Dy2 þ Dz2 þ Dh2 þ Dw2

q
. The Lipschitz constants of

~/ðx; y; z; h;w; tnÞ was increased by Lnþ1 ¼ Ln � 1þ Dtð Þ with L0 ¼
ffiffiffi
5

p
=2. The evolution was simulated until

T ¼ 0:15 (see Fig. 8). Table 3 shows a significant saving of the memory.



Fig. 8. Reflections in R3 simulated on a 325 grid until 1.0 s.

Table 3

Reflections in R3

Grid Local level set method Level set method

Space (MB) Rate Time (s) Rate Space (MB) Rate

85 3.0 – 3 – 0.4 –

165 53 17.7 52 17.4 12.6 32.0

325 284 5.4 240 4.0 403 32.0

645 1092 4.2 4257 17.7 12,885 32.0
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7. Conclusion

We have introduced a new method that can track an interface in arbitrary dimension and codimension.

By localizing the level set method near the interface, our new method significantly reduced the high
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computational expense of the level set method, while keeping the simplicity and efficiency of the level set

method.

Our method is stable under both the maximum norm and the Lipschitz semi-norm. Due to its Lipschitz
stability, the method does not need any reinitialization of level set function. However, without reinitial-

izations, the Lipschitz constant of a level set function might keep increasing by the estimate in Section 4,

which makes the method a bit less efficient. Numerical results show that our method is a half order ac-

curate.

In the future, the author expects to employ the reinitialization algorithms in [10,21] to the tree structure

in our method to improve the memory efficiency, and intends to improve the accuracy of our method.
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